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COMPUTER-AIDED ACQUISITION AlVD PROCESSING 

MEASUREMENTS WITH ISOPERIBOL CALORIMETERS 

A. KUESSNER, BASF AG, Ludwigshafen, FRG. 

SUM~RY 

OF DATA FOR CALORIC 

The undisturbed temperature equilibration of the vessel in an isoperibol 
calorimeter must follow an exponential time function. Any caloric effect 
within this vessel must cause a deviation of this function. A mathematical 
relation has been derived for linking the extent of this caloric effect and 
the integral of the temperature-time function. 

This algorithm has been utilized for a computer program capable for an 
automatic acquisition of the data of an appropriate digital temperature 
meter and for the automatic calculation of the calorimetric results, 

In two different calorimetric units these arrangements have been applied 
for the following determinations: 

specific heat capacities of liquid samples 
heats of chemical reactions 
reaction rates 
heats of vaporization of liquid samples. 

INTRODUCTION 

The aim of the present paper is to demonstrate the utilization of a 

computer for data acquisition and result evaluation in calorimetric 

measurements. The isoperibol calorimeter principle was chosen in view of 

the welldefined time dependence of its temperature equilibration. 

DEFINITIONS 

An isoperibol calorimeter is defined by the following conditions: 

T(F) # f(t) # f(x) 

T(M) = f(t) # f(x) 

R(th) * f(x) # f(t) 
where T(F) = Temperature of the furnace (surroundings) 

(1) 

(2) 

(3) 
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T(M) = Temperature of the measuring system 

R(th) = Thermal resistance of the insulating layer between the inner 

calorimetric vessel and the isothermal surrounding furnace. 

t = time 

X = locus 

All heat exchanges by radiation or convection have to be excluded. 

Isothermal operation : 
R,, Very small 
r, = r, = Constant 

Adiabatic operation. 
R,, Very large 

0 
TF = r, 

P 
Isoperibol operation: 
Rlh Defined 
& Constant 

P T” = L(l) 

TF Temperature of 
furnace (surroundings) 

TM Temperature of measuring system 

4, Thermal resistance 

a Environment. 12 Furnace (surroundinys), tz Measurings system, @ Thermal resistance 

Schematic representation of a calorimeter. 

fig. 1: Illustration showing the definition of an isoperibol calorimeter 

see lit. (1) 

Conceptually this means that the temperature of the inner measuring 

calorimeter vessel is a function of time - but NOT of the local position on 

its surface. The temperature of the outer surrounding furnace is 

independent of time AND local position. The thermal resistance of the 

insulating layer is also independent of time - but it MAY exhibit local 

spatial differences. This point is essential in view of all 

inhomogeneities present in the isolating system as a whole. Even highly 

conductive components, such as wires and the metallic temperature measuring 
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probes constitute parts of the entire isolating system. The overall heat 

conductivity is given by: 

l/R(th) = l/R(l) t l/R(2) t l/R(n) = f 

f = thermal conductivity coefficient. 

(4) 

FUNDAMENTALS 

If the conditions (1) to (3) are satisfied, the caloric transport from 

the inner measuring vessel through the thermal resistance to the outer 

furnace is governed by the following equilibration equation: 

d(T(M) - T(F)) A (T(M) - T(F) 
= - f* _ * (5) 

dt X m * cp 

where: A = area of the insulating layer 

x = thickness of the insulating layer 

m * cp = heat capacity of the entire measuring vessel 

f = coefficient of thermal conductivity for the entire 

insulating system (including metallic wires and so forth). 

In this calorimeter only relatively small temperature variations occur, 

and thus the dependence of the specific heat capacity cp on temperature can 

be neglected. cp can 

mentioned above in a 

f*A 

= 

x*m*cp 

therefore be combined with all the other constants 

single constant K: 

K 

Equation (5) simplifies to: 

d(T(W-T(F)) 
= - K * (T(M)-T(F)) 

dt 

Separation of the variables and integration yields: 

In (T(M) - T(F)) = - K * t t C 

(6) 

(7) 
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The integration constant C is given by the initial conditions at t = 0, 

1. e.: 

(T(M) - T(F)) 
ln 1 ) = - K*t (8) 

(T(M) I T(F))0 

(T(M) - T(F))0 refers to the difference between T(M) and T(F) at zero time. 

The aim of the proposed computer-assisted evaluation is to provide this 

starting temperature difference as a general indication of all thermal 

effects in the isoperibol calorimeter. In simple applications, such as the 

determination of a specific heat capacity, this difference can be evaluated 

by a graphical extrapolation (see Hemminger-Hoehne, 1. c. p. 97, fig. 2). 

On the other hand, this method is hardly applicable for systems with slow 

chemical reactions (see fig. 3). With such complications, extrapolation 

procedures become unsuitable, even if used in conjunction with computers. 

In such cases eq. (8) offers an alternative approach via integration: 

From eq. (8) it follows that: 

(T(M) - T(F)) = (T(M) -T(F))0 * exp( - K * t) (9) 

To explain this procedure, the following special case should first be 

considered: at large operation times for the isoperibol calorimeter T(M) is 

equal to T(F). In this special case T(F) could be compensated to zero and 

omitted in eq. (9). This case is comparable to that illustrated in fig. 2. 

Eq. (g) simplifies to: 

T(M) = T(M)0 * exp( - K * t) 

By integration it follows that: 

T(M)0 
T(M) dt = - - * exp( - K*t) tC 

K 

(101 

(11) 

C = integration constant 
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Reconstruction of the “true” temperature increase in an “adiabatic” calorimeter 
with heat leakage. 

2: Temperature evaluation by graphical extrapolation technique, 

see lit. (1) 
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fig. 3: Theoretical extrapolation technique comparable to fig. 2 with a 

slower chemical reaction, see lit. (2) 

The corresponding definite integral is: 

t 

1 T(M) (t(o) 1 
T(M) dt = - 

K 

0 

* (exp( - K * t) - 1) = F(t) 

F(t) is the integral area of the T(M) - curve up to time t. 

(12) 
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This is equal to: 

T(M)(t(o)) = K * F(t) t T(M)(t) (13) 

T(M)(t) is the temperature of the inner calorimetric vessel at the moment 

(t) corresponding to the upper integration limit. 

Since: 

T(M)(n-I) 

K= ln( ), (14) 

T(M)(n) 

(n is the number of temperature data acquisition points at equal time 

intervals.) 

it follows: 

T(M) (n-1) 
T(M)(t(o)) = T(M)(t) t F(t) * In ( 1. (15) 

T(M)(n) 

T(M)(t(o)) is the desired virtual temperature rise for the imaginary 

situation in which all caloric effects take place in one instantaneous 

event. This T(M)(to) is independent of t if (t) (the upper integration 

limit) lies on the exponential temperature decay trajectory, as K (eq. 

(14)) is constant. T(M)(to) is not dependent on an integration limit lower 

than t(o), since T(M)(t) is zero for t < to and the integration below this 

point makes no contribution to F(t). In other words, if the integration has 

been started before the caloric effect begins and carried through until its 

end, that is until the exponential decay function has been reached, eq.(15) 

yields the correct value for T(M)(t(o)). The fig. 4 shows the corresponding 

time function. 

Eq. (15) has been derived under the assumption of a constant steady 

temperature in the calorimeter prior to measurement. Here the situation has 

been simplified by setting this temperature to zero. In fact this 

simplification can be overcome. Whatever value T(M) may have prior to 

measurement, the physical definition of the isoperibol calorimeter (es. (1) 

- (3)) requires an exponential approach to T(F). For the additional caloric 

effect to be measured we have the addition of two distinct exponential 

functions with different starting points, but with exactly equal decay 

constant K, (see fig. 5). 
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fig. 4: Calculated l(M)- time curves in an isoperibol calorimeter for equal 

heat evolutions within various periods. 

c 

T (M)to= Tb + K.Ft - T (Ml, + T (M)t 

Tb 

Ta 

fig. 5: Calculated T(M) - time curve in an isoperibol calorimeter for 

measurements starting at any temperature value. 
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It follows that 

T(M)(n-I) 

T(M)(to) = F(t) * In ( 1 - T(M)(ts) + T(M)(t) + Tb (1’5) 

T(M)(n) 

where 

T(M)(to) = 

T(M)(ts) = 

T(M)(t) = 

Here all T(M) 

temperature rise due to the virtual instantaneous 

caloric effect 

measured temperature at the beginning of the integration 

of the temperature - time - curve. 

measured temperature at the upper integration limit, 

i.e. after termination of the caloric effect. 

- temperatures are differences to the so-called "basal 

temperature" T(b). This is not identical with the surrounding temperature 

T(F). The definition of the isoperibol calorimeter requires that there be a 

uniform temperature throughout the whole sample in the calorimetric vessel 

(see eq. (2)). This can be effected by a vigorous mechanical stirring. A 

constant stirring gives rise to a constant heat flux from the inner 

calorimetric vessel to the surroundings. The amount of heat per unit time 

depends on the viscosity of the liquid sample at the temperature chosen. 

Thus T(b) must be determined individually for each sample at each furnace 

temperature T(F). The basal temperature is approached exponentially, i.e. 

asymptotically. Exactly it will be reached theoretically at infinite times. 

So an experimental determination would be somewhat time-consuming. 

A more practical method is to calculate T(b). The sum of a geometric 

progression in given by: 

n n 

-1 

z 

2 n I- a 

(a + a t . ..a)= - 

I- a 

1 

(17) 



If a < 1 and n =M it follows for this now converging progression 

L = 
1-a 

n=l 

All (T(M)-Tb)- values determined after equal time intervals must form a 

converging geometric progression. The sum of it is the difference between 

the first T(M)-value and Tb. This is easily accessible by calculating 

T(M)(l) * T(M)(3) - (VW*)* 
Tb = (15) 

T(M)(I) - 2 * T(M)(*) + T(M)(3) 

With three T(M) - values determined after equal time intervals of 10 min 

a Tb-value is calculated automatically. This is a provisional value. Then 

T(M)(2) is converted to T(M)(I), T(M)(3) to T(M)(2) and a new T(3) value is 

determined. If both provisional values agree within a limit of 10 mK, their 

average is regarded as the reliable Tb-value for the further measurements. 

If these two proposals do not agree within this limit, that must be due to 

the not yet established isotherm conditions of the surroundings or to any 

disturbances from the power line. In this case the T(M) - subroutine has to 

be continued until an agreeable Tb-value occurs. 

EXPERIMENTAL 

The fig. 6 shows a sketch of the isoperibol calorimeter constructed in 

accordance with the above mentioned considerations. Unless otherwise 

indicated, the components are of glass. The outer temperature T(F) is 

regulated by a commercial thermostat (LAUDA KP20). The liquid from this 

unit is passed through the double-walls of a cylindrical vessel with an 

inner diameter of 50 mm. The necessary wall-temperature at the top (see 

definition in eq. (1)) is provided by a block of aluminum, heat losses to 

the surrounding air being restricted by an insulating cap. Vertical holes 

through this block are provided for the heating wires and a metallic 

temperature probe (Pt-100). The inner calorimeter vessel (100 ml) is 

equipped with an electric heater within a suitable quartz finger and a well 

for the temperature probe introduced from outside the block. The liquid 

sample is stirred vigorously by a magnetic rod connected to a perforated 

cylindrical teflon tube, the mechanism being driven by an external field. 
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I J 

Schematic diagramm of the 
WF isperibol calorimeter employed 

fig. 6: Schematic diagram of the isoperibol calorimeter employed. 

In this way, even more viscous samples can be agitated adequately. The 

insulating layer indicated by a dotted line in fig. 6 consists of a 

cup-shaped cover of knitted woo?. The temperature variation of the 

thermostat described is t/- 20 mK, The heat capacity of the inner vessel in 
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conjunction with the insulating layer give the system a thermal inertia 

which is able to damp these unavoidable variations down to less than 1 mK 

(see table I). Calorimetric measurements in the mK-region are thus 

feasible. 

The digita'l temperature measurements are performed with Swedish 

"systemteknik"-thermometers for the range 0 and t 200 degrees C and with a 

repeatability of +/- 1 mK (see table 1). An electric pulse generator 

provides heating pulses with a regulated intensity and a digitally 

determined time interval. This is the experimental basis for measuring 

temperatures and comparing the results with those obtained after heating 

the calorimetric vessel with defined amounts of energy. 

90.312 91.615 
90.296 
90.286 
90.283 
90.278 91.615 
90.287 91.615 
90.288 91.615 
90.294 91.615 
90.257 91.615 
90.280 91.615 
90.281 91.615 
90.277 91.615 
90.279 91.615 
90.289 
90.305 
90.320 
90.328 
90.324 
90.309 
90.292 
90.253 
90.232 
30.238 
90.3co 
90.308 
90.319 91.614 
90.326 91.614 
90.325 
90.329 
90.329 
90.328 
9c.33: 
90.333 
90.343 
90.346 

91.616 
91.615 
91.616 

91.614 
91 *ii14 
91.614 
91.614 
91.614 
91.614 
91.614 
91.614 
91.614 
91.614 
91.614 
91.614 

91.614 
91.613 
91.6!3 
91.613 
91.613 
91.613 
91.613 
91.613 

table I: Digital temperature readings at time intervals of 10 seconds: 

T(F) (left) and T(M) (right). 
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THE PROGRAM 

Eq. (5) to (17) have been derived purely theoretically. The reality of 

effective measurements is not quite this simple. The following practical 

limitations may be encountered: 

- The temperature readings are limited to whole milli-degrees. 

- Disturbances via power line equivalent to several milli-degrees may 

occur. 

A suitable program has to contain special subroutines to average the 

results and to eliminate these disturbances. 

The eq. (16) has been transformed into: 

n n 

1 

z 

(T(M)-T(b))(n-I) 
Tut) = In ( - * * 

z_ 
(T(M~-T(b))~n) 

n {T(M)-T(b)(n) 
1 1 

-T(M)(st) t T(b) f T(M)(n) (19) 

with: n I number of data readings 

T(M) = temperature reading in the calorimeter vessel 

T(b) = predetermined and automatically saved "basic 

temperature" (see eq. (18)). 

T(M)(t(o)) = the desired temperature step. 

T(M)(st) = temperature reading in the calorimeter vessel at 

starting the measurement (n = o) 

The fig. 7 shows the values of the averaging groups for T(M)(t(o)) 

according to eq. (19) as a function of the time after the start of the 

measurement. These values become constant when the exponential decay (see 

fig. 4) has been reached. For the determination of this final value and 

filtering it from disturbances an iterative program has been used: Five 

averaging groups have been compared respectively. If the value of group 

1 (see fig.7) equals to the average of the following four within a limit of 

t- 3 mK, this result is regarded as reliable. If this agreement is not 

achieved, this first group is discarded, the subsequent ones are moved down 
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a place and a new fith one is collected. If any of these results suffered 

from a severe disturbance, it must progress all groups down to the first 

one, until it is rejected from this position. So the entire determination 

is more time-cosuming, but it gives a correct and reliable result. 

5-------- 

+ 1 ooo- d 

/’ / 
+500- / 

/ 
I 

fig. 7: Averaging groups for ~(M)(t(o)) according to eq. (19) as a function 

of time after having started the measurement. 

CONTROLS 

First, the exponential time dependence given in eq. (9) was checked. 

Over a temperature range of two decades, the variation in the I< - values 

determined is less 1 percent. Secondly, the constancy of temperature jumps 

following similar electric heating pulses had to be confirmed. A constancy 

to within limits of t/- 2 mK was found using water as a standard. Water is 

a easily stirrable liquid with a specific heat capacity exhibiting only a 

slight temperature dependence between 30 and 100 deg. C. The constancy 

established (see table 2) indicates: 

- The results for the desired temperature jumps are reproducible, 

regardless of temperature. The deviations are less than 2 mK. 

- The electric pulses must similarly be reproducible. 

This means that any temperature variations (e. g. due to chemical reaction 

can be accurately and conveniently determined and compared with those 

brought about by a reproducible and well-defined pulse heating. 



f;i =. .= .z ? = .:., 6 = 
: ._ _. _. ._ I I 

7 ,-_: i 7 , 

i ;_ * b i i 

table 2: Reproducibility check for temperature jumps after similar electric 

heating pulses. 
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APPLICATIONS 

1. Soecific heat caoacities 

These dete~inations can be performed easily by relating the computed 

temperature jump differences to the energies of the respective heating 

pulses. Of course, a so-called "water value" (see "Calorimetry", l.c., page 

15) has to be determined and stored in the program. 

Although the energy indication from the electrical apparatus is probably 

reliable, it seemed preferable to have independent pulse energy 

measurements by the same calorimetric system. These were obtained in the 

following way: known quantities of two liquid samples with known specific 

heat capacities were heated consecutively in the same vessel by equal 

heating pulses. The specific heat capacities of these samples should be 

different. The following sample liquids were chosen: 

water (cp see R. K. Freier: "Aqueous Solutions", Vol. 2 Supplements 

Walter de Gruyter, Berlin, New York 1978) 

(lit. (3)) 

n-heptane (cp see T. 8. Douglas, G. T. Furukawa, R. E. McCoskey and 

A. F. Ball, Journal of Research of the National Bureau of 

Standards, Vol. 53, No. 3 Sept. 1954 Research Paper 2526) 

(lit. (4)) 

It follows: 

(m(I)*cp(I) + W) * T(M)(t(o))(I) = (m(2)*cp(2) + W) * T(M)(t(o ))(2) 

m(1) and m(2) = the masses of the samples 

T(M)(t(o))(l) and (2) = the respective temperature jump differences. 

W = "Water value", the heat capacity of the empty 

calorimeter vessel 

m(I)*cp(I)*T(M)(t(o))(I) - m(2)*cp(2)*T(M)(t(o))(2) 

(20) 

w = (21) 
T(M) (t(o) (2) - T(M)(t(o))(l) 
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With the programmed regression formula for the specific heat capacities 

of the above mentioned samples, the water value of the vessel and its 

temperature dependence could readily be calculated. The comparision of the 

respective pulse energy with the value given by the manufacturer gave 

identical values. This offers an additional confirmation of the correctness 

of the results. 

Nearly all specific heat capacities normally encountered are between 

those of n-heptane and water. In light of the checks mentioned, all of the 

following results can be regarded as reliable. 

The reproducibilities are normally < 0.5 % rel. - Table 3 shows a copy 

of the computer print-out table. In this output the temperature jump 

differences in [mK] have been also been printed. 

The calorimeter cell (see fig.6) is filled to approximately 95 % of its 

volume. The measured values actually are cd - values, taking'into 

consideration the additional evaporation of the sample liquid into the 

remaining 5 % gas volume by the temperature raising of approximately 1 K. 

It can, on the other hand, easily be shown that the difference between cb 

and cp must be at least two decades smaller than the above given limit of 

reliability. 

2. Heats of Reaction 

The above-mentioned program based on eq. (19) operates in such a way 

that the T(M)(t(o)) - values of all averaging groups are calculated 

automatically. Five values are stored simultaneously. If the first agrees 

with the average of the following four to within a limit of 3 mK, the 

result is regarded as correct and the determination is terminated. If it 

does not agree, the first group is eliminated and the second one takes its 

place and so on as mentioned earlier. This loop can often run for quite a 

while before the results of five averaging groups are constant, i.e. just 

as long as heat is evolved or as long as the chemical reaction occurs. 

Fig. 8 shows the calorimeter temperature as a function of time as 

recorded by an additional analogue recorder. Approximately 90 min. after 

the start, the computer finds the necessary agreement and gives a final 

value for the temperature jump. Subsequently four electric heat pulses 

follow for calibration purposes. - In this connection one should refer once 

again to fig. 3. 

The result of this enthalpy determination must be correct, if the volume 

and viscosity changes accompanying the reaction are negligible. Otherwise 

separate calibrations are necessary. 
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START - TEMPERATUR = 60 Grad C 

BASISLINIENVORSCHLAG 60.9167 ‘C 
BASISLINIENVORSCHLAG 60.7981 ‘C 
BASISLINIENVORSCHLAG 60.7432 ‘C 
BASISLINIENVORSCHLAG 60.7361 ‘C 
BASISTEMPERATUR * 60.733 Grad C 

Mcsstcmperaturt CP i Sprungtemperatur 
C&-ad C1 : E Joulelg,Kl : I mK 1 

61 .6 4.193 854.3 

62.2855 4.193 854.9 

62.856 4.188 895.5 

63.3245 4.191 834.8 

63.711 4.liS 834 

64.0465 4.188 835 

64.3185 4.189 834.8 

64.537 4.183 895.7 

64.7185 4.186 895 

64.885 4.181 895.3 

START - TEMPERhTUR = 70 Grad C 

BASISLINIENVORSCHLAG 70.8676 ‘C 
BASISLINIENVORSCHLAG 70.7551 ‘C 

BASISLINr~NVORSCHLAG 70.6865 ‘C 
BASIS~INXENVORSCHLAG 70.7043 ‘C 
BASIS>EMPERATUR = 70.695 Grad C 

Messtcmperaturl CP I Sprungtemperatur 
[Grad Cl I CJo~ls/g,Kl, I c mK I 

71.4945 4.19 830.6 

72.1735 4.198 888.7 

72.7465 4.185 850.6 

table 3: Copy of an computer output listing with the specific heat 

capacities of water. 
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3. Reaction rates 

In the cases considered previously, virtual temperature jumps have been 

determined as a measure of all caloric effects in the calorimeter vessel. 

After proper calibration with known heating pulses, the corresponding 

reaction enthalpy can be calculated exactly. This is normally what counts 

in calorimetric measurements. 

However, information on the reaction rates can also be easily obtained 

with an isoperibol calorimeter. We begin with the question: what happens 

when no heat is evolved by the chemical system? The temperature of the 

calorimeter approches T(b) exponentially, according eq. (17) and (18). 

Calculated with regular time intervals these give (see eq. (14)): 

T(M)(t)(n-1)) - Tb 

K = ln(- 1 

T(M)(t)(n) - Tb 

If the temperature values observed obey the exponential law, K must be a 

constant. Deviations must be due to a heat-producing chemical reaction. 

This effect can be established by the difference to the later constant K - 

values. 

For the additional measurement of the heat evolution as a function of 

time, one has to integrate eq. (19) with continuous registration of the 

K-values defined above. At the end of the caloric measurement this K - 

value attains a constant level which has to be substracted from the earlier 

registered K - values to obtain information on the heat evolution per unit 

time as a function of the reaction time. 

On the other hand, these values are of only limited use for reaction 

kinetic calculations. According to eq. (Z), the temperature of the 

calorimeter vessel must vary. In accordance with standard reaction 

kinetics, this influences the reaction rate considerably. Each individual 

case must be analyzed separately to see whether this effect is tolerable or 

not. 

Heats of vaoorization 

Heats of vaporization are normally determined in two different ways: 

1. Direct calorimetric measurement 

2. Indirect calculation from the temperature dependence of the vapour 

pressures. 
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for calibration 

fig. 8: T(M) as function of time for a slow chemical reaction. This example 

is taken from a routine measurement in this laboratory. 

The first technique has the advantage of greater reliability, but the 

disadvantage of the greater experimental effort. The second method is 

experimentally easier, but errors in the results may be severe 

(see V. Majer and V. Svoboda: "Enthalpies of Vaporization of Organic 

Compounds", IUPAC 1985, preface) (lit. (5)). 

It would be useful to have an easy method for reliable calorimetric 

measurements of this quantity. The isoperibol calorimeter described here is 

naturally suited for the measurement of rapid caloric effects. A suitable 

calorimetric cell has been developed and is depicted in fig. 9. All the 

measurement and heating facilities are the same as in the cell shown in 

fig. 6, An inner vessel contains the liquid sample. This is connected by 

two small concentric teflon tubes (outer diameter of external tube: 3 mm} 

with an external inert gas circulation system. These teflon tubes are led 

out through tightly-fitting holes in the aluminum block, The outer vessel 

contains o-dichlorbenzene as a relative high boiling heat exchange liquid 

of relatively low viscosity. The heating finger and the temperature probe 

can also be seen. Both vessels are stirred magnetically by the same 

external field. 



fig. 9: Calorimetric cell for the determination of heats of vaporization 

with liquid samples. 

-60 

-30 Vaporization 

- -TK3--+ + 

fig. 10: Recorder graph of the tjme-dependence of temperature in the cell 

of fig. 9 during determination of a heat of vaporization. 



79 

The measurement is performed at a temperature, at which the vapour 

pressure of the sample is approximately 100 mbar. Following temperature 

equlibration, part of the vapour-saturated air in the cell is slowly 

replaced with air. The quantity of the vapour is determined by weighing 

following absorption by a U-tube filled with active carbon in the gas 

circuit. After the vapour/air-exchange, the previous vapour concentration 

must be restored according to the prevailing temperature. The heat consumed 

during this vaporization lowers the temperature of the entire cell. This 

effect is measured and then compared with that obtained with a well-known 

calibration energy. Fig. 10 shows the corresponding temperature diagram. 
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